上海交大团队在《Nature》发表太阳能电池制备新技术太阳能发电向大规模低成本应用迈出重要一步

    期次:第1578期   



  本报讯 仅在全球太阳能丰沛的戈壁沙漠地区进行铺设,低成本的钙钛矿太阳能电池所发出的电能就可满足全球能源需要———这一设想很快就有可能变成现实。近日,国际著名学术期刊《Nature》在线发表了上海交通大学材料科学与工程学院金属基复合材料国家重点实验室韩礼元教授团队的研究成果“A solvent-and-vacuum-free route to large-area perovskite films for efficient solar modules”(无溶剂免真空条件下的大面积钙钛矿薄膜和高效太阳能电池模块制备),该团队使用更加经济安全的新方法制备出比蝉翼还薄数十倍的大面积钙钛矿薄膜,向实现大规模低成本太阳能发电的目标迈出了重要的一步。如果这种钙钛矿太阳能电池成功产业化,就无需依赖政府政策资助,便可成为市场主流的发电方式。
  上海交大材料科学与工程学院杨旭东研究员和韩礼元教授为共同通讯作者,陈汉博士、叶飞博士、唐文涛为共同第一作者。上海交通大学、日本材料物质研究所、苏州黎元新能源科技公司、瑞士洛桑联邦理工学院为合作研究单位。
  交大团队制备大面积新型太阳能电池模块,首次认证效率的诞生目前,太阳能光伏电池制备成本较高、工艺复杂,如果没有国家的政策支持,便难以实现大规模应用,迫切需要发展新一代低成本太阳能电池。
  “钙钛矿材料2009年首次应用于光伏技术,短短几年时间,实验室钙钛矿太阳能电池的光电转化效率屡屡取得突破,它的光电能量转换效率已经快速增长到22.1%,超过了多晶硅太阳能电池的效率水平,而发电成本却低于硅电池。因此,钙钛矿太阳能电池被评价为光伏研究领域极具竞争力、最有希望实现低成本发电的光伏技术。”韩礼元介绍说。
  既然钙钛矿电池很便宜,发电又“给力”,那为什么目前市面上还是硅电池更常见?因为这种新型太阳能电池“不好做”。“电池如果要达到实用化需求,那它的关键部位———钙钛矿材料薄膜———面积要足够大,薄膜质量要足够好,这样才能保证电池的光电能量转换效率足够高。多晶硅太阳能电池的光电能量转换效率大约在21%左右,而现阶段超过20%认证效率的钙钛矿太阳能电池面积只能达到0.04cm2-0.2cm2,顶多像个米粒那么大,而且依靠现有制备薄膜的技术,钙钛矿薄膜的面积越大,越容易出现瑕疵,电池的效率就越低。”“我们团队用了3年时间解决这个问题,在大面积高质量钙钛矿薄膜制备的基础上,开发了有效面积36.1cm2的钙钛矿电池模块,在国际认证机构首次获得了12.1%的认证效率,建立了第一个大面积钙钛矿模块的效率世界纪录。”韩礼元表示,这一成果的出现意味着未来钙钛矿光伏技术有了走出实验室、实现大规模产业化的可能。
  比蝉翼还薄几十倍,“高质量薄膜”决定高效率钙钛矿薄膜在钙钛矿电池中起着关键作用,它的质量和性能直接决定着电池效率的高低。而电池里的钙钛矿薄膜的厚度比蝉翼还要薄几十倍,而且这种材料的结构比较脆弱,制备过程对薄膜质量的影响非常大,一点点微小的条件变化就会导致薄膜中产生较多瑕疵,影响电池的光电转换效率。
  传统的钙钛矿薄膜制备方法可以大致分为“真空蒸镀法”和“溶液法”两类:前者对于薄膜的生长比较难控制,而且工序复杂、成本较高。后者是目前常用的方法,使用有机溶剂溶解钙钛矿粉末配置成溶液,将溶液做成液体薄膜,不过这些有机溶剂一般有刺激性甚至是毒性,大规模使用会带来环境问题;而且有机溶剂是一种外来添加的成分,会和钙钛矿材料产生复杂的相互作用,后期去除比较麻烦,也会增加成本、影响薄膜质量。
  能不能既不使用“真空蒸镀”又不使用“有机溶剂”呢?“要制作高质量的薄膜,还是得把钙钛矿材料做成液体,方便成形。在由碘、铅、甲铵三种主要的成分组成的钙钛矿材料里,甲铵是以离子的形式存在的,当甲铵离子遇到甲铵分子,会产生神奇的‘化学反应’,于是我们采用了一种方法———用‘甲铵’制服‘甲铵’:引进甲铵气体,让气体中的甲铵分子和钙钛矿材料中的甲铵离子进行反应,将生成物混合后就可以得到钙钛矿材料的液体。”韩礼元介绍说,这种液体可以快速释放出甲铵气体变成钙钛矿固体,而释放出的甲铵气体可以再次被用于与碘化甲铵固体粉末和碘化铅固体粉末进行反应,实现材料的循环利用。
  韩礼元团队所研究的新型制备大面积均匀钙钛矿薄膜的方法,为实现大规模生产低成本钙钛矿太阳能电池模块提供了一个新的发展方向。该团队表示,未来的研究方向将把该团队小面积高效率器件的制备技术应用到模块当中,有希望达到和当前硅太阳能电池相当的模块效率。
(吴天昊)